Add libraries

This commit is contained in:
Daniel 2023-11-19 22:23:35 +02:00
parent 179b8eeaa2
commit a1aea67d30
4 changed files with 708 additions and 1 deletions

View file

@ -50,7 +50,12 @@ This video explains all the above mentioned steps:
https://youtu.be/_mH2AjnAjDk https://youtu.be/_mH2AjnAjDk
## Dependencies 📖 ## Dependencies 📖
This code uses two libraries, ESP32-Arduino-CAN (https://github.com/miwagner/ESP32-Arduino-CAN/) slightly modified for this usecase, and the eModbus library (https://github.com/eModbus/eModbus). Both these are already located in the Software folder for an easy start. This code uses the following libraries, already located in the lib folder for an easy start:
- ESP32-Arduino-CAN (https://github.com/miwagner/ESP32-Arduino-CAN/) slightly modified for this usecase
- eModbus library (https://github.com/eModbus/eModbus)
- Adafruit Neopixel (https://github.com/adafruit/Adafruit_NeoPixel)
- mackelec SerialDataLink (https://github.com/mackelec/SerialDataLink)
- pierremolinaro acan2515 (https://github.com/pierremolinaro/acan2515)
It is also based on the info found in the following excellent repositories/websites: It is also based on the info found in the following excellent repositories/websites:
- https://gitlab.com/pelle8/gen24 - https://gitlab.com/pelle8/gen24

View file

@ -11,6 +11,7 @@
#include "src/lib/eModbus-eModbus/Logging.h" #include "src/lib/eModbus-eModbus/Logging.h"
#include "src/lib/eModbus-eModbus/ModbusServerRTU.h" #include "src/lib/eModbus-eModbus/ModbusServerRTU.h"
#include "src/lib/eModbus-eModbus/scripts/mbServerFCs.h" #include "src/lib/eModbus-eModbus/scripts/mbServerFCs.h"
#include "src/lib/mackelec-SerialDataLink/SerialDataLink.h"
#include "src/lib/miwagner-ESP32-Arduino-CAN/CAN_config.h" #include "src/lib/miwagner-ESP32-Arduino-CAN/CAN_config.h"
#include "src/lib/miwagner-ESP32-Arduino-CAN/ESP32CAN.h" #include "src/lib/miwagner-ESP32-Arduino-CAN/ESP32CAN.h"

View file

@ -0,0 +1,531 @@
// SerialDataLink.cpp
#include "SerialDataLink.h"
const uint16_t crcTable[256] = {
0, 32773, 32783, 10, 32795, 30, 20, 32785,
32819, 54, 60, 32825, 40, 32813, 32807, 34,
32867, 102, 108, 32873, 120, 32893, 32887, 114,
80, 32853, 32863, 90, 32843, 78, 68, 32833,
32963, 198, 204, 32969, 216, 32989, 32983, 210,
240, 33013, 33023, 250, 33003, 238, 228, 32993,
160, 32933, 32943, 170, 32955, 190, 180, 32945,
32915, 150, 156, 32921, 136, 32909, 32903, 130,
33155, 390, 396, 33161, 408, 33181, 33175, 402,
432, 33205, 33215, 442, 33195, 430, 420, 33185,
480, 33253, 33263, 490, 33275, 510, 500, 33265,
33235, 470, 476, 33241, 456, 33229, 33223, 450,
320, 33093, 33103, 330, 33115, 350, 340, 33105,
33139, 374, 380, 33145, 360, 33133, 33127, 354,
33059, 294, 300, 33065, 312, 33085, 33079, 306,
272, 33045, 33055, 282, 33035, 270, 260, 33025,
33539, 774, 780, 33545, 792, 33565, 33559, 786,
816, 33589, 33599, 826, 33579, 814, 804, 33569,
864, 33637, 33647, 874, 33659, 894, 884, 33649,
33619, 854, 860, 33625, 840, 33613, 33607, 834,
960, 33733, 33743, 970, 33755, 990, 980, 33745,
33779, 1014, 1020, 33785, 1000, 33773, 33767, 994,
33699, 934, 940, 33705, 952, 33725, 33719, 946,
912, 33685, 33695, 922, 33675, 910, 900, 33665,
640, 33413, 33423, 650, 33435, 670, 660, 33425,
33459, 694, 700, 33465, 680, 33453, 33447, 674,
33507, 742, 748, 33513, 760, 33533, 33527, 754,
720, 33493, 33503, 730, 33483, 718, 708, 33473,
33347, 582, 588, 33353, 600, 33373, 33367, 594,
624, 33397, 33407, 634, 33387, 622, 612, 33377,
544, 33317, 33327, 554, 33339, 574, 564, 33329,
33299, 534, 540, 33305, 520, 33293, 33287, 514
};
union Convert
{
uint16_t u16;
int16_t i16;
struct
{
byte low;
byte high;
};
}convert;
// Constructor
SerialDataLink::SerialDataLink(Stream &serial, uint8_t transmitID, uint8_t receiveID, uint8_t maxIndexTX, uint8_t maxIndexRX, bool enableRetransmit)
: serial(serial), transmitID(transmitID), receiveID(receiveID), maxIndexTX(maxIndexTX), maxIndexRX(maxIndexRX), retransmitEnabled(enableRetransmit) {
// Initialize buffers and state variables
txBufferIndex = 0;
isTransmitting = false;
isReceiving = false;
transmissionError = false;
readError = false;
newData = false;
// Initialize data arrays and update flags
memset(dataArrayTX, 0, sizeof(dataArrayTX));
memset(dataArrayRX, 0, sizeof(dataArrayRX));
memset(dataUpdated, 0, sizeof(dataUpdated));
memset(lastSent , 0, sizeof(lastSent ));
// Additional initialization as required
}
void SerialDataLink::updateData(uint8_t index, int16_t value)
{
if (index < maxIndexTX)
{
if (dataArrayTX[index] != value)
{
dataArrayTX[index] = value;
dataUpdated[index] = true;
lastSent[index] = millis();
}
}
}
int16_t SerialDataLink::getReceivedData(uint8_t index)
{
if (index < dataArraySizeRX) {
return dataArrayRX[index];
} else {
// Handle the case where the index is out of bounds
return -1;
}
}
bool SerialDataLink::checkTransmissionError(bool resetFlag)
{
bool currentStatus = transmissionError;
if (resetFlag && transmissionError) {
transmissionError = false;
}
return currentStatus;
}
bool SerialDataLink::checkReadError(bool reset)
{
bool error = readError;
if (reset) {
readError = false;
}
return error;
}
bool SerialDataLink::checkNewData(bool resetFlag) {
bool currentStatus = newData;
if (resetFlag && newData) {
newData = false;
}
return currentStatus;
}
void SerialDataLink::run()
{
switch (currentState)
{
case DataLinkState::Idle:
// Decide if the device should start transmitting
currentState = DataLinkState::Receiving;
if (shouldTransmit())
{
currentState = DataLinkState::Transmitting;
}
break;
case DataLinkState::Transmitting:
if (isTransmitting)
{
sendNextByte(); // Continue sending the current data
}
else
{
constructPacket(); // Construct a new packet if not currently transmitting
uint8_t ack;
// now it is known which acknoledge need sending since last Reception
if (needToACK)
{
needToACK = false;
ack = (txBufferIndex > 5) ? ACK_RTT_CODE : ACK_CODE;
serial.write(ack);
}
if (needToNACK)
{
needToNACK = false;
ack = (txBufferIndex > 5) ? NACK_RTT_CODE : NACK_CODE;
serial.write(ack);
}
}
if (maxIndexTX < 1)
{
currentState = DataLinkState::Receiving;
}
// Check if the transmission is complete
if (transmissionComplete)
{
transmissionComplete = false;
isTransmitting = false;
currentState = DataLinkState::WaitingForAck; // Move to WaitingForAck state
}
break;
case DataLinkState::WaitingForAck:
if (ackTimeout())
{
// Handle ACK timeout scenario
transmissionError = true;
isTransmitting = false;
//handleAckTimeout();
//--- if no ACK's etc received may as well move to Transmitting
currentState = DataLinkState::Transmitting;
}
if (ackReceived())
{
// No data to send from the other device
currentState = DataLinkState::Transmitting;
}
if (requestToSend)
{
// The other device has data to send (indicated by ACK+RTT)
currentState = DataLinkState::Receiving;
}
break;
case DataLinkState::Receiving:
read();
if (readComplete)
{
readComplete = false;
// transition to transmit mode
currentState = DataLinkState::Transmitting;
}
break;
default:
currentState = DataLinkState::Idle;
}
}
bool SerialDataLink::shouldTransmit()
{
// Priority condition: Device with transmitID = 1 and receiveID = 0 has the highest priority
if (transmitID == 1 && receiveID == 0)
{
return true;
}
return false;
}
void SerialDataLink::constructPacket()
{
if (maxIndexTX <1) return;
if (!isTransmitting)
{
lastTransmissionTime = millis();
txBufferIndex = 0; // Reset the TX buffer index
addToTxBuffer(headerChar);
addToTxBuffer(transmitID);
addToTxBuffer(0); // EOT position - place holder
unsigned long currentTime = millis();
int count = txBufferIndex;
for (uint8_t i = 0; i < maxIndexTX; i++)
{
if (dataUpdated[i] || (currentTime - lastSent[i] >= updateInterval))
{
addToTxBuffer(i);
convert.i16 = dataArrayTX[i];
addToTxBuffer(convert.high);
addToTxBuffer(convert.low);
dataUpdated[i] = false;
lastSent[i] = currentTime; // Update the last sent time for this index
}
}
if (count == txBufferIndex)
{
// No data was added to the buffer, so no need to send a packet
return;
}
addToTxBuffer(eotChar);
//----- assign EOT position
txBuffer[2] = txBufferIndex - 1;
uint16_t crc = calculateCRC16(txBuffer, txBufferIndex);
convert.u16 = crc;
addToTxBuffer(convert.high);
addToTxBuffer(convert.low);
isTransmitting = true;
}
}
void SerialDataLink::addToTxBuffer(uint8_t byte)
{
if (txBufferIndex < txBufferSize)
{
txBuffer[txBufferIndex] = byte;
txBufferIndex++;
}
}
bool SerialDataLink::sendNextByte()
{
if (!isTransmitting) return false;
if (txBufferIndex >= txBufferSize)
{
txBufferIndex = 0; // Reset the TX buffer index
isTransmitting = false;
return false; // Buffer was fully sent, end transmission
}
serial.write(txBuffer[sendBufferIndex]);
sendBufferIndex++;
if (sendBufferIndex >= txBufferIndex)
{
isTransmitting = false;
txBufferIndex = 0; // Reset the TX buffer index for the next packet
sendBufferIndex = 0;
transmissionComplete = true;
return true; // Packet was fully sent
}
return false; // More bytes remain to be sent
}
bool SerialDataLink::ackReceived()
{
// Check if there is data available to read
if (serial.available() > 0)
{
// Peek at the next byte without removing it from the buffer
uint8_t nextByte = serial.peek();
if (nextByte == headerChar)
{
requestToSend = true;
return false;
}
uint8_t receivedByte = serial.read();
switch (receivedByte)
{
case ACK_CODE:
// Handle standard ACK
return true;
case ACK_RTT_CODE:
// Handle ACK with request to transmit
requestToSend = true;
return true;
case NACK_RTT_CODE:
requestToSend = true;
case NACK_CODE:
transmissionError = true;
return false;
default:
break;
}
}
return false; // No ACK, NACK, or new packet received
}
bool SerialDataLink::ackTimeout()
{
// Check if the current time has exceeded the last transmission time by the ACK timeout period
if (millis() - lastTransmissionTime > ACK_TIMEOUT) {
return true; // Timeout occurred
}
return false; // No timeout
}
void SerialDataLink::read()
{
if (maxIndexRX < 1) return;
if (serial.available())
{
//Serial.print(".");
if (millis() - lastHeaderTime > PACKET_TIMEOUT && rxBufferIndex > 0)
{
// Timeout occurred, reset buffer and pointer
rxBufferIndex = 0;
eotPosition = 0;
readError = true;
}
uint8_t incomingByte = serial.read();
switch (rxBufferIndex) {
case 0: // Looking for the header
if (incomingByte == headerChar)
{
lastHeaderTime = millis();
rxBuffer[rxBufferIndex] = incomingByte;
rxBufferIndex++;
}
break;
case 1: // Looking for the address
if (incomingByte == receiveID) {
rxBuffer[rxBufferIndex] = incomingByte;
rxBufferIndex++;
} else {
// Address mismatch, reset to look for a new packet
rxBufferIndex = 0;
}
break;
case 2: // EOT position
eotPosition = incomingByte;
rxBuffer[rxBufferIndex] = incomingByte;
rxBufferIndex++;
break;
default:
// Normal data handling
rxBuffer[rxBufferIndex] = incomingByte;
rxBufferIndex++;
if (isCompletePacket())
{
processPacket();
rxBufferIndex = 0; // Reset for the next packet
readComplete = true; // Indicate that read operation is complete
}
// Check for buffer overflow
if (rxBufferIndex >= rxBufferSize)
{
rxBufferIndex = 0;
}
break;
}
}
}
bool SerialDataLink::isCompletePacket() {
if (rxBufferIndex - 3 < eotPosition) return false;
// Ensure there are enough bytes for EOT + 2-byte CRC
// Check if the third-last byte is the EOT character
if (rxBuffer[eotPosition] == eotChar)
{
return true;
}
return false;
}
bool SerialDataLink::checkCRC()
{
uint16_t receivedCrc;
if (rxBufferIndex < 3)
{
// Not enough data for CRC check
return false;
}
convert.high = rxBuffer[rxBufferIndex - 2];
convert.low = rxBuffer[rxBufferIndex - 1];
receivedCrc = convert.u16;
// Calculate CRC for the received data (excluding the CRC bytes themselves)
uint16_t calculatedCrc = calculateCRC16(rxBuffer, rxBufferIndex - 2);
return receivedCrc == calculatedCrc;
}
void SerialDataLink::processPacket()
{
if (!checkCRC()) {
// CRC check failed, handle the error
readError = true;
return;
}
// Start from index 3 to skip the SOT and ADDRESS and EOT Position characters
uint8_t i = 3;
while (i < eotPosition)
{
uint8_t arrayID = rxBuffer[i++];
// Make sure there's enough data for a complete int16 (2 bytes)
if (i + 1 >= rxBufferIndex) {
readError = true;
needToNACK = true;
return; // Incomplete packet or buffer overflow
}
// Combine the next two bytes into an int16 value
int16_t value = (int16_t(rxBuffer[i]) << 8) | int16_t(rxBuffer[i + 1]);
i += 2;
// Handle the array ID and value here
if (arrayID < dataArraySizeRX) {
dataArrayRX[arrayID] = value;
}
else
{
// Handle invalid array ID
readError = true;
needToNACK = true;
return;
}
newData = true;
needToACK = true;
}
}
void SerialDataLink::setUpdateInterval(unsigned long interval) {
updateInterval = interval;
}
void SerialDataLink::setAckTimeout(unsigned long timeout) {
ACK_TIMEOUT = timeout;
}
void SerialDataLink::setPacketTimeout(unsigned long timeout) {
PACKET_TIMEOUT = timeout;
}
void SerialDataLink::setHeaderChar(char header)
{
headerChar = header;
}
void SerialDataLink::setEOTChar(char eot)
{
eotChar = eot;
}
uint16_t SerialDataLink::calculateCRC16(const uint8_t* data, size_t length)
{
uint16_t crc = 0xFFFF; // Start value for CRC
for (size_t i = 0; i < length; i++)
{
uint8_t index = (crc >> 8) ^ data[i];
crc = (crc << 8) ^ crcTable[index];
}
return crc;
}

View file

@ -0,0 +1,170 @@
/**
* @file SerialDataLink.h
* @brief Half-Duplex Serial Data Link for Arduino
*
* This file contains the definition of the SerialDataLink class, designed to facilitate
* half-duplex communication between Arduino controllers. The class employs a non-blocking,
* poll-based approach to transmit and receive data, making it suitable for applications
* where continuous monitoring and variable transfer between controllers are required.
*
* The half-duplex nature of this implementation allows for data transfer in both directions,
* but not simultaneously, ensuring a controlled communication flow and reducing the likelihood
* of data collision.
*
*
* @author MackElec
* @web https://github.com/mackelec/SerialDataLink
* @license MIT
*/
// ... Class definition ...
/**
* @class SerialDataLink
* @brief Class for managing half-duplex serial communication.
*
* Provides functions to send and receive data in a half-duplex manner over a serial link.
* It supports non-blocking operation with a polling approach to check for new data and
* transmission errors.
*
* Public Methods:
* - SerialDataLink(): Constructor to initialize the communication parameters.
* - run(): Main method to be called frequently to handle data transmission and reception.
* - updateData(): Method to update data to be transmitted.
* - getReceivedData(): Retrieves data received from the serial link.
* - checkNewData(): Checks if new data has been received.
* - checkTransmissionError(): Checks for transmission errors.
* - checkReadError(): Checks for read errors.
* - setUpdateInterval(): Sets the interval for data updates.
* - setAckTimeout(): Sets the timeout for acknowledgments.
* - setPacketTimeout(): Sets the timeout for packet reception.
* - setHeaderChar(): Sets the character used to denote the start of a packet.
* - setEOTChar(): Sets the character used to denote the end of a packet.
*/
#ifndef SERIALDATALINK_H
#define SERIALDATALINK_H
#include <Arduino.h>
class SerialDataLink {
public:
// Constructor
SerialDataLink(Stream &serial, uint8_t transmitID, uint8_t receiveID, uint8_t maxIndexTX, uint8_t maxIndexRX, bool enableRetransmit = false);
// Method to handle data transmission and reception
void run();
void updateData(uint8_t index, int16_t value);
// Check if new data has been received
bool checkNewData(bool resetFlag);
int16_t getReceivedData(uint8_t index);
// Check for errors
bool checkTransmissionError(bool resetFlag);
bool checkReadError(bool resetFlag);
// Setter methods for various parameters and special characters
void setUpdateInterval(unsigned long interval);
void setAckTimeout(unsigned long timeout);
void setPacketTimeout(unsigned long timeout);
void setHeaderChar(char header);
void setEOTChar(char eot);
private:
enum class DataLinkState
{
Idle,
Transmitting,
WaitingForAck,
Receiving,
Error
};
DataLinkState currentState;
Stream &serial;
uint8_t transmitID;
uint8_t receiveID;
// Separate max indices for TX and RX
const uint8_t maxIndexTX;
const uint8_t maxIndexRX;
// Buffer and state management
static const uint8_t txBufferSize = 128; // Adjust size as needed
static const uint8_t rxBufferSize = 128; // Adjust size as needed
uint8_t txBuffer[txBufferSize];
uint8_t rxBuffer[rxBufferSize];
uint8_t txBufferIndex;
uint8_t rxBufferIndex;
uint8_t sendBufferIndex = 0;
bool isTransmitting;
bool transmissionComplete = false;
bool isReceiving;
bool readComplete = false;
bool retransmitEnabled;
bool transmissionError = false;
bool readError = false;
// Data arrays and update management
static const uint8_t dataArraySizeTX = 20; // Adjust size as needed for TX
static const uint8_t dataArraySizeRX = 20; // Adjust size as needed for RX
int16_t dataArrayTX[dataArraySizeTX];
int16_t dataArrayRX[dataArraySizeRX];
bool dataUpdated[dataArraySizeTX];
unsigned long lastSent[dataArraySizeTX];
unsigned long updateInterval = 500;
unsigned long ACK_TIMEOUT = 100;
unsigned long PACKET_TIMEOUT = 100; // Timeout in milliseconds
// Special characters for packet framing
char headerChar = '<';
char eotChar = '>';
static const uint8_t ACK_CODE = 0x06; // Standard acknowledgment
static const uint8_t ACK_RTT_CODE = 0x07; // Acknowledgment with request to transmit
static const uint8_t NACK_CODE = 0x08; // Negative acknowledgment
static const uint8_t NACK_RTT_CODE = 0x09; // Negative acknowledgment with request to transmit
// Internal methods for packet construction, transmission, and reception
bool shouldTransmit();
void constructPacket();
void addToTxBuffer(uint8_t byte);
bool sendNextByte();
bool ackReceived();
bool ackTimeout();
// Internal methods for reception
void read();
void handleResendRequest();
bool isCompletePacket();
void processPacket();
void sendACK();
bool checkCRC();
uint16_t calculateCRC16(const uint8_t* data, size_t length);
unsigned long lastTransmissionTime;
bool requestToSend = false;
unsigned long lastHeaderTime = 0;
bool newData = false;
bool needToACK = false;
bool needToNACK = false;
uint8_t eotPosition = 0;
};
#endif // SERIALDATALINK_H