Sync with latest master

This commit is contained in:
Daniel 2023-05-02 22:49:24 +03:00
parent df67067099
commit ad4cbcc703
7 changed files with 4880 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 951 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 895 KiB

After

Width:  |  Height:  |  Size: 916 KiB

Before After
Before After

View file

@ -28,6 +28,9 @@ Here's how to connect the high voltage lines
Here's how to wire up battery low voltage wiring
![alt text](https://github.com/dalathegreat/BYD-Battery-Emulator-For-Gen24/blob/main/Images/BatteryControlWiring.png)
For more examples showing wiring, see the Example#####.jpg pictures in the 'Images' folder
https://github.com/dalathegreat/BYD-Battery-Emulator-For-Gen24/tree/main/Images
## How to compile the software 💻
1. Download the Arduino IDE: https://www.arduino.cc/en/software
2. When the Arduino IDE has been started;

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,412 @@
/*!
* @file Adafruit_NeoPixel.h
*
* This is part of Adafruit's NeoPixel library for the Arduino platform,
* allowing a broad range of microcontroller boards (most AVR boards,
* many ARM devices, ESP8266 and ESP32, among others) to control Adafruit
* NeoPixels, FLORA RGB Smart Pixels and compatible devices -- WS2811,
* WS2812, WS2812B, SK6812, etc.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing products
* from Adafruit!
*
* Written by Phil "Paint Your Dragon" Burgess for Adafruit Industries,
* with contributions by PJRC, Michael Miller and other members of the
* open source community.
*
* This file is part of the Adafruit_NeoPixel library.
*
* Adafruit_NeoPixel is free software: you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* Adafruit_NeoPixel is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with NeoPixel. If not, see
* <http://www.gnu.org/licenses/>.
*
*/
#ifndef ADAFRUIT_NEOPIXEL_H
#define ADAFRUIT_NEOPIXEL_H
#ifdef ARDUINO
#if (ARDUINO >= 100)
#include <Arduino.h>
#else
#include <WProgram.h>
#include <pins_arduino.h>
#endif
#ifdef USE_TINYUSB // For Serial when selecting TinyUSB
#include <Adafruit_TinyUSB.h>
#endif
#endif
#ifdef TARGET_LPC1768
#include <Arduino.h>
#endif
#if defined(ARDUINO_ARCH_RP2040)
#include <stdlib.h>
#include "hardware/pio.h"
#include "hardware/clocks.h"
#include "rp2040_pio.h"
#endif
// The order of primary colors in the NeoPixel data stream can vary among
// device types, manufacturers and even different revisions of the same
// item. The third parameter to the Adafruit_NeoPixel constructor encodes
// the per-pixel byte offsets of the red, green and blue primaries (plus
// white, if present) in the data stream -- the following #defines provide
// an easier-to-use named version for each permutation. e.g. NEO_GRB
// indicates a NeoPixel-compatible device expecting three bytes per pixel,
// with the first byte transmitted containing the green value, second
// containing red and third containing blue. The in-memory representation
// of a chain of NeoPixels is the same as the data-stream order; no
// re-ordering of bytes is required when issuing data to the chain.
// Most of these values won't exist in real-world devices, but it's done
// this way so we're ready for it (also, if using the WS2811 driver IC,
// one might have their pixels set up in any weird permutation).
// Bits 5,4 of this value are the offset (0-3) from the first byte of a
// pixel to the location of the red color byte. Bits 3,2 are the green
// offset and 1,0 are the blue offset. If it is an RGBW-type device
// (supporting a white primary in addition to R,G,B), bits 7,6 are the
// offset to the white byte...otherwise, bits 7,6 are set to the same value
// as 5,4 (red) to indicate an RGB (not RGBW) device.
// i.e. binary representation:
// 0bWWRRGGBB for RGBW devices
// 0bRRRRGGBB for RGB
// RGB NeoPixel permutations; white and red offsets are always same
// Offset: W R G B
#define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B
#define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G
#define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B
#define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R
#define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G
#define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R
// RGBW NeoPixel permutations; all 4 offsets are distinct
// Offset: W R G B
#define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3)) ///< Transmit as W,R,G,B
#define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2)) ///< Transmit as W,R,B,G
#define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3)) ///< Transmit as W,G,R,B
#define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2)) ///< Transmit as W,G,B,R
#define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1)) ///< Transmit as W,B,R,G
#define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1)) ///< Transmit as W,B,G,R
#define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3)) ///< Transmit as R,W,G,B
#define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2)) ///< Transmit as R,W,B,G
#define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3)) ///< Transmit as R,G,W,B
#define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2)) ///< Transmit as R,G,B,W
#define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1)) ///< Transmit as R,B,W,G
#define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1)) ///< Transmit as R,B,G,W
#define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3)) ///< Transmit as G,W,R,B
#define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2)) ///< Transmit as G,W,B,R
#define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3)) ///< Transmit as G,R,W,B
#define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2)) ///< Transmit as G,R,B,W
#define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,W,R
#define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1)) ///< Transmit as G,B,R,W
#define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0)) ///< Transmit as B,W,R,G
#define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0)) ///< Transmit as B,W,G,R
#define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0)) ///< Transmit as B,R,W,G
#define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0)) ///< Transmit as B,R,G,W
#define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,W,R
#define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0)) ///< Transmit as B,G,R,W
// Add NEO_KHZ400 to the color order value to indicate a 400 KHz device.
// All but the earliest v1 NeoPixels expect an 800 KHz data stream, this is
// the default if unspecified. Because flash space is very limited on ATtiny
// devices (e.g. Trinket, Gemma), v1 NeoPixels aren't handled by default on
// those chips, though it can be enabled by removing the ifndef/endif below,
// but code will be bigger. Conversely, can disable the NEO_KHZ400 line on
// other MCUs to remove v1 support and save a little space.
#define NEO_KHZ800 0x0000 ///< 800 KHz data transmission
#ifndef __AVR_ATtiny85__
#define NEO_KHZ400 0x0100 ///< 400 KHz data transmission
#endif
// If 400 KHz support is enabled, the third parameter to the constructor
// requires a 16-bit value (in order to select 400 vs 800 KHz speed).
// If only 800 KHz is enabled (as is default on ATtiny), an 8-bit value
// is sufficient to encode pixel color order, saving some space.
#ifdef NEO_KHZ400
typedef uint16_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor
#else
typedef uint8_t neoPixelType; ///< 3rd arg to Adafruit_NeoPixel constructor
#endif
// These two tables are declared outside the Adafruit_NeoPixel class
// because some boards may require oldschool compilers that don't
// handle the C++11 constexpr keyword.
/* A PROGMEM (flash mem) table containing 8-bit unsigned sine wave (0-255).
Copy & paste this snippet into a Python REPL to regenerate:
import math
for x in range(256):
print("{:3},".format(int((math.sin(x/128.0*math.pi)+1.0)*127.5+0.5))),
if x&15 == 15: print
*/
static const uint8_t PROGMEM _NeoPixelSineTable[256] = {
128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 162, 165, 167, 170,
173, 176, 179, 182, 185, 188, 190, 193, 196, 198, 201, 203, 206, 208, 211,
213, 215, 218, 220, 222, 224, 226, 228, 230, 232, 234, 235, 237, 238, 240,
241, 243, 244, 245, 246, 248, 249, 250, 250, 251, 252, 253, 253, 254, 254,
254, 255, 255, 255, 255, 255, 255, 255, 254, 254, 254, 253, 253, 252, 251,
250, 250, 249, 248, 246, 245, 244, 243, 241, 240, 238, 237, 235, 234, 232,
230, 228, 226, 224, 222, 220, 218, 215, 213, 211, 208, 206, 203, 201, 198,
196, 193, 190, 188, 185, 182, 179, 176, 173, 170, 167, 165, 162, 158, 155,
152, 149, 146, 143, 140, 137, 134, 131, 128, 124, 121, 118, 115, 112, 109,
106, 103, 100, 97, 93, 90, 88, 85, 82, 79, 76, 73, 70, 67, 65,
62, 59, 57, 54, 52, 49, 47, 44, 42, 40, 37, 35, 33, 31, 29,
27, 25, 23, 21, 20, 18, 17, 15, 14, 12, 11, 10, 9, 7, 6,
5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 9, 10, 11,
12, 14, 15, 17, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35, 37,
40, 42, 44, 47, 49, 52, 54, 57, 59, 62, 65, 67, 70, 73, 76,
79, 82, 85, 88, 90, 93, 97, 100, 103, 106, 109, 112, 115, 118, 121,
124};
/* Similar to above, but for an 8-bit gamma-correction table.
Copy & paste this snippet into a Python REPL to regenerate:
import math
gamma=2.6
for x in range(256):
print("{:3},".format(int(math.pow((x)/255.0,gamma)*255.0+0.5))),
if x&15 == 15: print
*/
static const uint8_t PROGMEM _NeoPixelGammaTable[256] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3,
3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6,
6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10,
11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17,
17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 34, 34, 35,
36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81,
82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 96, 97, 99, 100, 102,
103, 105, 106, 108, 109, 111, 112, 114, 115, 117, 119, 120, 122, 124, 125,
127, 129, 130, 132, 134, 136, 137, 139, 141, 143, 145, 146, 148, 150, 152,
154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182,
184, 186, 188, 191, 193, 195, 197, 199, 202, 204, 206, 209, 211, 213, 215,
218, 220, 223, 225, 227, 230, 232, 235, 237, 240, 242, 245, 247, 250, 252,
255};
/*!
@brief Class that stores state and functions for interacting with
Adafruit NeoPixels and compatible devices.
*/
class Adafruit_NeoPixel {
public:
// Constructor: number of LEDs, pin number, LED type
Adafruit_NeoPixel(uint16_t n, int16_t pin = 6,
neoPixelType type = NEO_GRB + NEO_KHZ800);
Adafruit_NeoPixel(void);
~Adafruit_NeoPixel();
void begin(void);
void show(void);
void setPin(int16_t p);
void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b);
void setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b, uint8_t w);
void setPixelColor(uint16_t n, uint32_t c);
void fill(uint32_t c = 0, uint16_t first = 0, uint16_t count = 0);
void setBrightness(uint8_t);
void clear(void);
void updateLength(uint16_t n);
void updateType(neoPixelType t);
/*!
@brief Check whether a call to show() will start sending data
immediately or will 'block' for a required interval. NeoPixels
require a short quiet time (about 300 microseconds) after the
last bit is received before the data 'latches' and new data can
start being received. Usually one's sketch is implicitly using
this time to generate a new frame of animation...but if it
finishes very quickly, this function could be used to see if
there's some idle time available for some low-priority
concurrent task.
@return 1 or true if show() will start sending immediately, 0 or false
if show() would block (meaning some idle time is available).
*/
bool canShow(void) {
// It's normal and possible for endTime to exceed micros() if the
// 32-bit clock counter has rolled over (about every 70 minutes).
// Since both are uint32_t, a negative delta correctly maps back to
// positive space, and it would seem like the subtraction below would
// suffice. But a problem arises if code invokes show() very
// infrequently...the micros() counter may roll over MULTIPLE times in
// that interval, the delta calculation is no longer correct and the
// next update may stall for a very long time. The check below resets
// the latch counter if a rollover has occurred. This can cause an
// extra delay of up to 300 microseconds in the rare case where a
// show() call happens precisely around the rollover, but that's
// neither likely nor especially harmful, vs. other code that might
// stall for 30+ minutes, or having to document and frequently remind
// and/or provide tech support explaining an unintuitive need for
// show() calls at least once an hour.
uint32_t now = micros();
if (endTime > now) {
endTime = now;
}
return (now - endTime) >= 300L;
}
/*!
@brief Get a pointer directly to the NeoPixel data buffer in RAM.
Pixel data is stored in a device-native format (a la the NEO_*
constants) and is not translated here. Applications that access
this buffer will need to be aware of the specific data format
and handle colors appropriately.
@return Pointer to NeoPixel buffer (uint8_t* array).
@note This is for high-performance applications where calling
setPixelColor() on every single pixel would be too slow (e.g.
POV or light-painting projects). There is no bounds checking
on the array, creating tremendous potential for mayhem if one
writes past the ends of the buffer. Great power, great
responsibility and all that.
*/
uint8_t *getPixels(void) const { return pixels; };
uint8_t getBrightness(void) const;
/*!
@brief Retrieve the pin number used for NeoPixel data output.
@return Arduino pin number (-1 if not set).
*/
int16_t getPin(void) const { return pin; };
/*!
@brief Return the number of pixels in an Adafruit_NeoPixel strip object.
@return Pixel count (0 if not set).
*/
uint16_t numPixels(void) const { return numLEDs; }
uint32_t getPixelColor(uint16_t n) const;
/*!
@brief An 8-bit integer sine wave function, not directly compatible
with standard trigonometric units like radians or degrees.
@param x Input angle, 0-255; 256 would loop back to zero, completing
the circle (equivalent to 360 degrees or 2 pi radians).
One can therefore use an unsigned 8-bit variable and simply
add or subtract, allowing it to overflow/underflow and it
still does the expected contiguous thing.
@return Sine result, 0 to 255, or -128 to +127 if type-converted to
a signed int8_t, but you'll most likely want unsigned as this
output is often used for pixel brightness in animation effects.
*/
static uint8_t sine8(uint8_t x) {
return pgm_read_byte(&_NeoPixelSineTable[x]); // 0-255 in, 0-255 out
}
/*!
@brief An 8-bit gamma-correction function for basic pixel brightness
adjustment. Makes color transitions appear more perceptially
correct.
@param x Input brightness, 0 (minimum or off/black) to 255 (maximum).
@return Gamma-adjusted brightness, can then be passed to one of the
setPixelColor() functions. This uses a fixed gamma correction
exponent of 2.6, which seems reasonably okay for average
NeoPixels in average tasks. If you need finer control you'll
need to provide your own gamma-correction function instead.
*/
static uint8_t gamma8(uint8_t x) {
return pgm_read_byte(&_NeoPixelGammaTable[x]); // 0-255 in, 0-255 out
}
/*!
@brief Convert separate red, green and blue values into a single
"packed" 32-bit RGB color.
@param r Red brightness, 0 to 255.
@param g Green brightness, 0 to 255.
@param b Blue brightness, 0 to 255.
@return 32-bit packed RGB value, which can then be assigned to a
variable for later use or passed to the setPixelColor()
function. Packed RGB format is predictable, regardless of
LED strand color order.
*/
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b) {
return ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
}
/*!
@brief Convert separate red, green, blue and white values into a
single "packed" 32-bit WRGB color.
@param r Red brightness, 0 to 255.
@param g Green brightness, 0 to 255.
@param b Blue brightness, 0 to 255.
@param w White brightness, 0 to 255.
@return 32-bit packed WRGB value, which can then be assigned to a
variable for later use or passed to the setPixelColor()
function. Packed WRGB format is predictable, regardless of
LED strand color order.
*/
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b, uint8_t w) {
return ((uint32_t)w << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
}
static uint32_t ColorHSV(uint16_t hue, uint8_t sat = 255, uint8_t val = 255);
/*!
@brief A gamma-correction function for 32-bit packed RGB or WRGB
colors. Makes color transitions appear more perceptially
correct.
@param x 32-bit packed RGB or WRGB color.
@return Gamma-adjusted packed color, can then be passed in one of the
setPixelColor() functions. Like gamma8(), this uses a fixed
gamma correction exponent of 2.6, which seems reasonably okay
for average NeoPixels in average tasks. If you need finer
control you'll need to provide your own gamma-correction
function instead.
*/
static uint32_t gamma32(uint32_t x);
void rainbow(uint16_t first_hue = 0, int8_t reps = 1,
uint8_t saturation = 255, uint8_t brightness = 255,
bool gammify = true);
static neoPixelType str2order(const char *v);
private:
#if defined(ARDUINO_ARCH_RP2040)
void rp2040Init(uint8_t pin, bool is800KHz);
void rp2040Show(uint8_t pin, uint8_t *pixels, uint32_t numBytes, bool is800KHz);
#endif
protected:
#ifdef NEO_KHZ400 // If 400 KHz NeoPixel support enabled...
bool is800KHz; ///< true if 800 KHz pixels
#endif
bool begun; ///< true if begin() previously called
uint16_t numLEDs; ///< Number of RGB LEDs in strip
uint16_t numBytes; ///< Size of 'pixels' buffer below
int16_t pin; ///< Output pin number (-1 if not yet set)
uint8_t brightness; ///< Strip brightness 0-255 (stored as +1)
uint8_t *pixels; ///< Holds LED color values (3 or 4 bytes each)
uint8_t rOffset; ///< Red index within each 3- or 4-byte pixel
uint8_t gOffset; ///< Index of green byte
uint8_t bOffset; ///< Index of blue byte
uint8_t wOffset; ///< Index of white (==rOffset if no white)
uint32_t endTime; ///< Latch timing reference
#ifdef __AVR__
volatile uint8_t *port; ///< Output PORT register
uint8_t pinMask; ///< Output PORT bitmask
#endif
#if defined(ARDUINO_ARCH_STM32) || defined(ARDUINO_ARCH_ARDUINO_CORE_STM32)
GPIO_TypeDef *gpioPort; ///< Output GPIO PORT
uint32_t gpioPin; ///< Output GPIO PIN
#endif
#if defined(ARDUINO_ARCH_RP2040)
PIO pio = pio0;
int sm = 0;
bool init = true;
#endif
};
#endif // ADAFRUIT_NEOPIXEL_H

813
Software/Software.ino Normal file
View file

@ -0,0 +1,813 @@
#include <Arduino.h>
#include "HardwareSerial.h"
#include "config.h"
#include "logging.h"
#include "mbServerFCs.h"
#include "ModbusServerRTU.h"
#include "ESP32CAN.h"
#include "CAN_config.h"
#include "Adafruit_NeoPixel.h"
/* User definable settings */
#define BATTERY_WH_MAX 30000 //Battery size in Wh (Maximum value Fronius accepts is 60000 [60kWh])
#define MAXPERCENTAGE 800 //80.0% , Max percentage the battery will charge to (App will show 100% once this value is reached)
#define MINPERCENTAGE 200 //20.0% , Min percentage the battery will discharge to (App will show 0% once this value is reached)
//#define INTERLOCK_REQUIRED //Uncomment this line to skip requiring both high voltage connectors to be seated on the LEAF battery
byte printValues = 1; //Should modbus values be printed to serial output?
/* Do not change code below unless you are sure what you are doing */
//CAN parameters
CAN_device_t CAN_cfg; // CAN Config
unsigned long previousMillis10 = 0; // will store last time a 10ms CAN Message was send
unsigned long previousMillis100 = 0; // will store last time a 100ms CAN Message was send
const int interval10 = 10; // interval (ms) at which send CAN Messages
const int interval100 = 100; // interval (ms) at which send CAN Messages
const int rx_queue_size = 10; // Receive Queue size
uint8_t CANstillAlive = 12; //counter for checking if CAN is still alive
uint8_t errorCode = 0; //stores if we have an error code active from battery control logic
uint8_t mprun10r = 0; //counter 0-20 for 0x1F2 message
byte mprun10 = 0; //counter 0-3
byte mprun100 = 0; //counter 0-3
CAN_frame_t LEAF_1F2 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x1F2,.data = {0x10, 0x64, 0x00, 0xB0, 0x00, 0x1E, 0x00, 0x8F}};
CAN_frame_t LEAF_50B = {.FIR = {.B = {.DLC = 7,.FF = CAN_frame_std,}},.MsgID = 0x50B,.data = {0x00, 0x00, 0x06, 0xC0, 0x00, 0x00, 0x00}};
CAN_frame_t LEAF_50C = {.FIR = {.B = {.DLC = 6,.FF = CAN_frame_std,}},.MsgID = 0x50C,.data = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
CAN_frame_t LEAF_1D4 = {.FIR = {.B = {.DLC = 8,.FF = CAN_frame_std,}},.MsgID = 0x1D4,.data = {0x6E, 0x6E, 0x00, 0x04, 0x07, 0x46, 0xE0, 0x44}};
//Nissan LEAF battery parameters from CAN
#define ZE0_BATTERY 0
#define AZE0_BATTERY 1
#define ZE1_BATTERY 2
uint8_t LEAF_Battery_Type = ZE0_BATTERY;
#define WH_PER_GID 77 //One GID is this amount of Watt hours
#define LB_MAX_SOC 1000 //LEAF BMS never goes over this value. We use this info to rescale SOC% sent to Fronius
#define LB_MIN_SOC 0 //LEAF BMS never goes below this value. We use this info to rescale SOC% sent to Fronius
uint16_t LB_Discharge_Power_Limit = 0; //Limit in kW
uint16_t LB_Charge_Power_Limit = 0; //Limit in kW
int16_t LB_MAX_POWER_FOR_CHARGER = 0; //Limit in kW
int16_t LB_SOC = 500; //0 - 100.0 % (0-1000)
uint16_t LB_TEMP = 0; //Temporary value used in status checks
uint16_t LB_Wh_Remaining = 0; //Amount of energy in battery, in Wh
uint16_t LB_GIDS = 0;
uint16_t LB_MAX = 0;
uint16_t LB_Max_GIDS = 273; //Startup in 24kWh mode
uint16_t LB_StateOfHealth = 99; //State of health %
uint16_t LB_Total_Voltage = 370; //Battery voltage (0-450V)
int16_t LB_Current = 0; //Current in A going in/out of battery
int16_t LB_Power = 0; //Watts going in/out of battery
int16_t LB_HistData_Temperature_MAX = 6; //-40 to 86*C
int16_t LB_HistData_Temperature_MIN = 5; //-40 to 86*C
uint8_t LB_Relay_Cut_Request = 0; //LB_FAIL
uint8_t LB_Failsafe_Status = 0; //LB_STATUS = 000b = normal start Request
//001b = Main Relay OFF Request
//010b = Charging Mode Stop Request
//011b = Main Relay OFF Request
//100b = Caution Lamp Request
//101b = Caution Lamp Request & Main Relay OFF Request
//110b = Caution Lamp Request & Charging Mode Stop Request
//111b = Caution Lamp Request & Main Relay OFF Request
byte LB_Interlock = 1; //Contains info on if HV leads are seated (Note, to use this both HV connectors need to be inserted)
byte LB_Full_CHARGE_flag = 0; //LB_FCHGEND , Goes to 1 if battery is fully charged
byte LB_MainRelayOn_flag = 0; //No-Permission=0, Main Relay On Permission=1
byte LB_Capacity_Empty = 0; //LB_EMPTY, , Goes to 1 if battery is empty
// global Modbus memory registers
const int intervalModbusTask = 4800; //Interval at which to refresh modbus registers
unsigned long previousMillisModbus = 0; //will store last time a modbus register refresh
// ModbusRTU Server
#define MB_RTU_NUM_VALUES 30000
//#define MB_RTU_DIVICE_ID 21
uint16_t mbPV[MB_RTU_NUM_VALUES]; // process variable memory: produced by sensors, etc., cyclic read by PLC via modbus TCP
#define STANDBY 0
#define INACTIVE 1
#define DARKSTART 2
#define ACTIVE 3
#define FAULT 4
#define UPDATING 5
uint16_t capacity_Wh_startup = BATTERY_WH_MAX;
uint16_t max_power = 40960; //41kW
uint16_t max_voltage = 4040; //(404.4V), if higher charging is not possible (goes into forced discharge)
uint16_t min_voltage = 3100; //Min Voltage (310.0V), if lower Gen24 disables battery
uint16_t battery_voltage = 3700;
uint16_t SOC = 5000; //SOC 0-100.00% //Updates later on from CAN
uint16_t StateOfHealth = 9900; //SOH 0-100.00% //Updates later on from CAN
uint16_t capacity_Wh = BATTERY_WH_MAX; //Updates later on from CAN
uint16_t remaining_capacity_Wh = BATTERY_WH_MAX; //Updates later on from CAN
uint16_t max_target_discharge_power = 0; //0W (0W > restricts to no discharge) //Updates later on from CAN
uint16_t max_target_charge_power = 4312; //4.3kW (during charge), both 307&308 can be set (>0) at the same time //Updates later on from CAN
uint16_t temperature_max = 50; //Todo, read from LEAF pack, uint not ok
uint16_t temperature_min = 60; //Todo, read from LEAF pack, uint not ok
uint16_t bms_char_dis_status; //0 idle, 1 discharging, 2, charging
uint16_t bms_status = ACTIVE; //ACTIVE - [0..5]<>[STANDBY,INACTIVE,DARKSTART,ACTIVE,FAULT,UPDATING]
uint16_t stat_batt_power = 0; //power going in/out of battery
// Create a ModbusRTU server instance listening on Serial2 with 2000ms timeout
ModbusServerRTU MBserver(Serial2, 2000);
// LED control
Adafruit_NeoPixel pixels(1, WS2812_PIN, NEO_GRB + NEO_KHZ800);
unsigned long previousMillis10ms = 0;
static int green = 0;
static bool rampUp = true;
const int maxBrightness = 255;
// Setup() - initialization happens here
void setup()
{
//CAN pins
pinMode(CAN_SE_PIN, OUTPUT);
digitalWrite(CAN_SE_PIN, LOW);
CAN_cfg.speed = CAN_SPEED_500KBPS;
CAN_cfg.tx_pin_id = GPIO_NUM_27;
CAN_cfg.rx_pin_id = GPIO_NUM_26;
CAN_cfg.rx_queue = xQueueCreate(rx_queue_size, sizeof(CAN_frame_t));
// Init CAN Module
ESP32Can.CANInit();
Serial.println(CAN_cfg.speed);
// Init Serial monitor
Serial.begin(9600);
while (!Serial)
{
}
Serial.println("__ OK __");
//Set up Modbus RTU Server
Serial.println("Set ModbusRtu PIN");
pinMode(RS485_EN_PIN, OUTPUT);
digitalWrite(RS485_EN_PIN, HIGH);
pinMode(RS485_SE_PIN, OUTPUT);
digitalWrite(RS485_SE_PIN, HIGH);
pinMode(PIN_5V_EN, OUTPUT);
digitalWrite(PIN_5V_EN, HIGH);
// Init Static data to the RTU Modbus
handle_static_data_modbus();
// Init Serial2 connected to the RTU Modbus
RTUutils::prepareHardwareSerial(Serial2);
Serial2.begin(9600, SERIAL_8N1, RS485_RX_PIN, RS485_TX_PIN);
// Register served function code worker for server
MBserver.registerWorker(MBTCP_ID, READ_HOLD_REGISTER, &FC03);
MBserver.registerWorker(MBTCP_ID, WRITE_HOLD_REGISTER, &FC06);
MBserver.registerWorker(MBTCP_ID, WRITE_MULT_REGISTERS, &FC16);
MBserver.registerWorker(MBTCP_ID, R_W_MULT_REGISTERS, &FC23);
// Start ModbusRTU background task
MBserver.begin(Serial2);
// Init LED control
pixels.begin();
}
// perform main program functions
void loop()
{
handle_can_leaf_battery(); //runs as fast as possible
if (millis() - previousMillis10ms >= interval10) //every 10ms
{
previousMillis10ms = millis();
handle_LED_state(); //Set the LED color according to state
}
if (millis() - previousMillisModbus >= intervalModbusTask) //every 5s
{
previousMillisModbus = millis();
update_values_leaf_battery(); //Map the values to the correct registers
handle_update_data_modbusp201(); //Updata for ModbusRTU Server for GEN24
handle_update_data_modbusp301(); //Updata for ModbusRTU Server for GEN24
}
}
void update_values_leaf_battery()
{ //This function maps all the values fetched via CAN to the correct parameters used for modbus
bms_status = ACTIVE; //Startout in active mode
StateOfHealth = (LB_StateOfHealth * 100); //Increase range from 99% -> 99.00%
//Calculate the SOC% value to send to Fronius
LB_SOC = LB_MIN_SOC + (LB_MAX_SOC - LB_MIN_SOC) * (LB_SOC - MINPERCENTAGE) / (MAXPERCENTAGE - MINPERCENTAGE);
if (LB_SOC < 0)
{ //We are in the real SOC% range of 0-20%, always set SOC sent to Fronius as 0%
LB_SOC = 0;
}
if (LB_SOC > 1000)
{ //We are in the real SOC% range of 80-100%, always set SOC sent to Fronius as 100%
LB_SOC = 1000;
}
SOC = (LB_SOC * 10); //increase LB_SOC range from 0-100.0 -> 100.00
battery_voltage = (LB_Total_Voltage*10); //One more decimal needed
capacity_Wh = (LB_Max_GIDS * WH_PER_GID);
remaining_capacity_Wh = LB_Wh_Remaining;
/* Define power able to be discharged from battery */
if(LB_Discharge_Power_Limit > 30) //if >30kW can be pulled from battery
{
max_target_discharge_power = 30000; //cap value so we don't go over the Fronius limits
}
else
{
max_target_discharge_power = (LB_Discharge_Power_Limit * 1000); //kW to W
}
if(SOC == 0) //Scaled SOC% value is 0.00%, we should not discharge battery further
{
max_target_discharge_power = 0;
}
/* Define power able to be put into the battery */
if(LB_Charge_Power_Limit > 30) //if >30kW can be put into the battery
{
max_target_charge_power = 30000; //cap value so we don't go over the Fronius limits
}
if(LB_Charge_Power_Limit < 0) //LB_MAX_POWER_FOR_CHARGER can actually go to -10kW
{
max_target_charge_power = 0; //cap calue so we dont do under the Fronius limits
}
else
{
max_target_charge_power = (LB_Charge_Power_Limit * 1000); //kW to W
}
if(SOC == 10000) //Scaled SOC% value is 100.00%
{
max_target_charge_power = 0; //No need to charge further, set max power to 0
}
/*Extra safeguards*/
if(LB_GIDS < 10) //800Wh left in battery
{ //Battery is running abnormally low, some discharge logic might have failed. Zero it all out.
SOC = 0;
max_target_discharge_power = 0;
}
if(LB_Full_CHARGE_flag)
{ //Battery reports that it is fully charged stop all further charging incase it hasn't already
max_target_charge_power = 0;
}
if(LB_Relay_Cut_Request)
{ //LB_FAIL, BMS requesting shutdown and contactors to be opened
Serial.println("Battery requesting immediate shutdown and contactors to be opened!");
//Note, this is sometimes triggered during the night while idle, and the BMS recovers after a while. Removed latching from this scenario
errorCode = 1;
max_target_discharge_power = 0;
max_target_charge_power = 0;
}
if(LB_Failsafe_Status > 0) // 0 is normal, start charging/discharging
{
switch(LB_Failsafe_Status)
{
case(1):
//Normal Stop Request
//This means that battery is fully discharged and it's OK to stop the session. For stationary storage we don't disconnect contactors, so we do nothing here.
break;
case(2):
//Charging Mode Stop Request
//This means that battery is fully charged and it's OK to stop the session. For stationary storage we don't disconnect contactors, so we do nothing here.
break;
case(3):
//Charging Mode Stop Request & Normal Stop Request
//Normal stop request. For stationary storage we don't disconnect contactors, so we ignore this.
break;
case(4):
//Caution Lamp Request
Serial.println("Battery raised caution indicator. Inspect battery status!");
break;
case(5):
//Caution Lamp Request & Normal Stop Request
bms_status = FAULT;
errorCode = 2;
Serial.println("Battery raised caution indicator AND requested discharge stop. Inspect battery status!");
break;
case(6):
//Caution Lamp Request & Charging Mode Stop Request
bms_status = FAULT;
errorCode = 3;
Serial.println("Battery raised caution indicator AND requested charge stop. Inspect battery status!");
break;
case(7):
//Caution Lamp Request & Charging Mode Stop Request & Normal Stop Request
bms_status = FAULT;
errorCode = 4;
Serial.println("Battery raised caution indicator AND requested charge/discharge stop. Inspect battery status!");
break;
default:
break;
}
}
if(LB_StateOfHealth < 25)
{ //Battery is extremely degraded, not fit for secondlifestorage. Zero it all out.
if(LB_StateOfHealth != 0)
{ //Extra check to see that we actually have a SOH Value available
Serial.println("State of health critically low. Battery internal resistance too high to continue. Recycle battery.");
bms_status = FAULT;
errorCode = 5;
max_target_discharge_power = 0;
max_target_charge_power = 0;
}
}
#ifdef INTERLOCK_REQUIRED
if(!LB_Interlock)
{
Serial.println("Battery interlock loop broken. Check that high voltage connectors are seated. Battery will be disabled!");
bms_status = FAULT;
errorCode = 6;
SOC = 0;
max_target_discharge_power = 0;
max_target_charge_power = 0;
}
#endif
/* Check if the BMS is still sending CAN messages. If we go 60s without messages we raise an error*/
if(!CANstillAlive)
{
bms_status = FAULT;
errorCode = 7;
Serial.println("No CAN communication detected for 60s. Shutting down battery control.");
}
else
{
CANstillAlive--;
}
LB_Power = LB_Total_Voltage * LB_Current;//P = U * I
stat_batt_power = convert2unsignedint16(LB_Power); //add sign if needed
temperature_min = convert2unsignedint16((LB_HistData_Temperature_MIN * 10)); //add sign if needed and increase range
temperature_max = convert2unsignedint16((LB_HistData_Temperature_MAX * 10));
if(printValues)
{ //values heading towards the modbus registers
if(errorCode > 0)
{
Serial.print("ERROR CODE ACTIVE IN SYSTEM. NUMBER: ");
Serial.println(errorCode);
}
Serial.print("BMS Status (3=OK): ");
Serial.println(bms_status);
switch (bms_char_dis_status)
{
case 0:
Serial.println("Battery Idle");
break;
case 1:
Serial.println("Battery Discharging");
break;
case 2:
Serial.println("Battery Charging");
break;
default:
break;
}
Serial.print("Power: ");
Serial.println(LB_Power);
Serial.print("Max discharge power: ");
Serial.println(max_target_discharge_power);
Serial.print("Max charge power: ");
Serial.println(max_target_charge_power);
Serial.print("SOH%: ");
Serial.println(StateOfHealth);
Serial.print("SOC% to Fronius: ");
Serial.println(SOC);
Serial.print("Temperature Min: ");
Serial.println(temperature_min);
Serial.print("Temperature Max: ");
Serial.println(temperature_max);
Serial.print("GIDS: ");
Serial.println(LB_GIDS);
Serial.print("LEAF battery gen: ");
Serial.println(LEAF_Battery_Type);
}
}
void handle_static_data_modbus() {
// Store the data into the array
static uint16_t si_data[] = { 21321, 1 };
static uint16_t byd_data[] = { 16985, 17408, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
static uint16_t battery_data[] = { 16985, 17440, 16993, 29812, 25970, 31021, 17007, 30752, 20594, 25965, 26997, 27936, 18518, 0, 0, 0 };
static uint16_t volt_data[] = { 13614, 12288, 0, 0, 0, 0, 0, 0, 13102, 12598, 0, 0, 0, 0, 0, 0 };
static uint16_t serial_data[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
static uint16_t static_data[] = { 1, 0 };
static uint16_t* data_array_pointers[] = { si_data, byd_data, battery_data, volt_data, serial_data, static_data };
static uint16_t data_sizes[] = { sizeof(si_data), sizeof(byd_data), sizeof(battery_data), sizeof(volt_data), sizeof(serial_data), sizeof(static_data) };
static uint16_t i = 100;
for (uint8_t arr_idx = 0; arr_idx < sizeof(data_array_pointers) / sizeof(uint16_t*); arr_idx++) {
uint16_t data_size = data_sizes[arr_idx];
memcpy(&mbPV[i], data_array_pointers[arr_idx], data_size);
i += data_size / sizeof(uint16_t);
}
}
void handle_update_data_modbusp201() {
// Store the data into the array
static uint16_t system_data[13];
system_data[0] = 0; // Id.: p201 Value.: 0 Scaled value.: 0 Comment.: Always 0
system_data[1] = 0; // Id.: p202 Value.: 0 Scaled value.: 0 Comment.: Always 0
system_data[2] = (capacity_Wh_startup); // Id.: p203 Value.: 32000 Scaled value.: 32kWh Comment.: Capacity rated, maximum value is 60000 (60kWh)
system_data[3] = (max_power); // Id.: p204 Value.: 32000 Scaled value.: 32kWh Comment.: Nominal capacity
system_data[4] = (max_power); // Id.: p205 Value.: 14500 Scaled value.: 30,42kW Comment.: Max Charge/Discharge Power=10.24kW (lowest value of 204 and 205 will be enforced by Gen24)
system_data[5] = (max_voltage); // Id.: p206 Value.: 3667 Scaled value.: 362,7VDC Comment.: Max Voltage, if higher charging is not possible (goes into forced discharge)
system_data[6] = (min_voltage); // Id.: p207 Value.: 2776 Scaled value.: 277,6VDC Comment.: Min Voltage, if lower Gen24 disables battery
system_data[7] = 53248; // Id.: p208 Value.: 53248 Scaled value.: 53248 Comment.: Always 53248 for this BYD, Peak Charge power?
system_data[8] = 10; // Id.: p209 Value.: 10 Scaled value.: 10 Comment.: Always 10
system_data[9] = 53248; // Id.: p210 Value.: 53248 Scaled value.: 53248 Comment.: Always 53248 for this BYD, Peak Discharge power?
system_data[10] = 10; // Id.: p211 Value.: 10 Scaled value.: 10 Comment.: Always 10
system_data[11] = 0; // Id.: p212 Value.: 0 Scaled value.: 0 Comment.: Always 0
system_data[12] = 0; // Id.: p213 Value.: 0 Scaled value.: 0 Comment.: Always 0
static uint16_t i = 200;
memcpy(&mbPV[i], system_data, sizeof(system_data));
}
void handle_update_data_modbusp301() {
// Store the data into the array
static uint16_t battery_data[24];
if (LB_Current > 0) { //Positive value = Charging on LEAF
bms_char_dis_status = 2; //Charging
} else if (LB_Current < 0) { //Negative value = Discharging on LEAF
bms_char_dis_status = 1; //Discharging
} else { //LB_Current == 0
bms_char_dis_status = 0; //idle
}
if (bms_status == ACTIVE) {
battery_data[8] = battery_voltage; // Id.: p309 Value.: 3161 Scaled value.: 316,1VDC Comment.: Batt Voltage outer (0 if status !=3, maybe a contactor closes when active): 173.4V
} else {
battery_data[8] = 0;
}
battery_data[0] = bms_status; // Id.: p301 Value.: 3 Scaled value.: 3 Comment.: status(*): ACTIVE - [0..5]<>[STANDBY,INACTIVE,DARKSTART,ACTIVE,FAULT,UPDATING]
battery_data[1] = 0; // Id.: p302 Value.: 0 Scaled value.: 0 Comment.: always 0
battery_data[2] = 128 + bms_char_dis_status; // Id.: p303 Value.: 130 Scaled value.: 130 Comment.: mode(*): normal
battery_data[3] = SOC; // Id.: p304 Value.: 1700 Scaled value.: 50% Comment.: SOC: (50% would equal 5000)
battery_data[4] = capacity_Wh; // Id.: p305 Value.: 32000 Scaled value.: 32kWh Comment.: tot cap:
battery_data[5] = remaining_capacity_Wh; // Id.: p306 Value.: 13260 Scaled value.: 13,26kWh Comment.: remaining cap: 7.68kWh
battery_data[6] = max_target_discharge_power; // Id.: p307 Value.: 25604 Scaled value.: 25,604kW Comment.: max/target discharge power: 0W (0W > restricts to no discharge)
battery_data[7] = max_target_charge_power; // Id.: p308 Value.: 25604 Scaled value.: 25,604kW Comment.: max/target charge power: 4.3kW (during charge), both 307&308 can be set (>0) at the same time
//Battery_data[8] set previously in function // Id.: p309 Value.: 3161 Scaled value.: 316,1VDC Comment.: Batt Voltage outer (0 if status !=3, maybe a contactor closes when active): 173.4V
battery_data[9] = 2000; // Id.: p310 Value.: 64121 Scaled value.: 6412,1W Comment.: Current Power to API: if>32768... -(65535-61760)=3775W
battery_data[10] = battery_voltage; // Id.: p311 Value.: 3161 Scaled value.: 316,1VDC Comment.: Batt Voltage inner: 173.2V (LEAF voltage is in whole volts, need to add a decimal)
battery_data[11] = 2000; // Id.: p312 Value.: 64121 Scaled value.: 6412,1W Comment.: p310
battery_data[12] = temperature_min; // Id.: p313 Value.: 75 Scaled value.: 7,5 Comment.: temp min: 7 degrees (if below 0....65535-t)
battery_data[13] = temperature_max; // Id.: p314 Value.: 95 Scaled value.: 9,5 Comment.: temp max: 9 degrees (if below 0....65535-t)
battery_data[14] = 0; // Id.: p315 Value.: 0 Scaled value.: 0 Comment.: always 0
battery_data[15] = 0; // Id.: p316 Value.: 0 Scaled value.: 0 Comment.: always 0
battery_data[16] = 16; // Id.: p317 Value.: 0 Scaled value.: 0 Comment.: counter charge hi
battery_data[17] = 22741; // Id.: p318 Value.: 0 Scaled value.: 0 Comment.: counter charge lo....65536*101+9912 = 6629048 Wh?
battery_data[18] = 0; // Id.: p319 Value.: 0 Scaled value.: 0 Comment.: always 0
battery_data[19] = 0; // Id.: p320 Value.: 0 Scaled value.: 0 Comment.: always 0
battery_data[20] = 13; // Id.: p321 Value.: 0 Scaled value.: 0 Comment.: counter discharge hi
battery_data[21] = 52064; // Id.: p322 Value.: 0 Scaled value.: 0 Comment.: counter discharge lo....65536*92+7448 = 6036760 Wh?
battery_data[22] = 230; // Id.: p323 Value.: 0 Scaled value.: 0 Comment.: device temperature (23 degrees)
battery_data[23] = StateOfHealth; // Id.: p324 Value.: 9900 Scaled value.: 99% Comment.: SOH
static uint16_t i = 300;
memcpy(&mbPV[i], battery_data, sizeof(battery_data));
}
void handle_can_leaf_battery()
{
CAN_frame_t rx_frame;
unsigned long currentMillis = millis();
// Receive next CAN frame from queue
if (xQueueReceive(CAN_cfg.rx_queue, &rx_frame, 3 * portTICK_PERIOD_MS) == pdTRUE)
{
if (rx_frame.FIR.B.FF == CAN_frame_std)
{
//printf("New standard frame");
switch (rx_frame.MsgID)
{
case 0x1DB:
LB_Current = (rx_frame.data.u8[0] << 3) | (rx_frame.data.u8[1] & 0xe0) >> 5;
if (LB_Current & 0x0400)
{
// negative so extend the sign bit
LB_Current |= 0xf800;
}
LB_Total_Voltage = ((rx_frame.data.u8[2] << 2) | (rx_frame.data.u8[3] & 0xc0) >> 6) / 2;
//Collect various data from the BMS
LB_Relay_Cut_Request = ((rx_frame.data.u8[1] & 0x18) >> 3);
LB_Failsafe_Status = (rx_frame.data.u8[1] & 0x07);
LB_MainRelayOn_flag = (byte) ((rx_frame.data.u8[3] & 0x20) >> 5);
LB_Full_CHARGE_flag = (byte) ((rx_frame.data.u8[3] & 0x10) >> 4);
LB_Interlock = (byte) ((rx_frame.data.u8[3] & 0x08) >> 3);
break;
case 0x1DC:
LB_Discharge_Power_Limit = ((rx_frame.data.u8[0] << 2 | rx_frame.data.u8[1] >> 6) / 4.0);
LB_Charge_Power_Limit = (((rx_frame.data.u8[1] & 0x3F) << 2 | rx_frame.data.u8[2] >> 4) / 4.0);
LB_MAX_POWER_FOR_CHARGER = ((((rx_frame.data.u8[2] & 0x0F) << 6 | rx_frame.data.u8[3] >> 2) / 10.0) - 10);
break;
case 0x55B:
LB_TEMP = (rx_frame.data.u8[0] << 2 | rx_frame.data.u8[1] >> 6);
if (LB_TEMP != 0x3ff) //3FF is unavailable value
{
LB_SOC = LB_TEMP;
}
break;
case 0x5BC:
CANstillAlive = 12; //Indicate that we are still getting CAN messages from the BMS
LB_MAX = ((rx_frame.data.u8[5] & 0x10) >> 4);
if (LB_MAX)
{
LB_Max_GIDS = (rx_frame.data.u8[0] << 2) | ((rx_frame.data.u8[1] & 0xC0) >> 6);
//Max gids active, do nothing
//Only the 30/40/62kWh packs have this mux
}
else
{
//Normal current GIDS value is transmitted
LB_GIDS = (rx_frame.data.u8[0] << 2) | ((rx_frame.data.u8[1] & 0xC0) >> 6);
LB_Wh_Remaining = (LB_GIDS * WH_PER_GID);
}
LB_TEMP = (rx_frame.data.u8[4] >> 1);
if (LB_TEMP != 0)
{
LB_StateOfHealth = LB_TEMP; //Collect state of health from battery
}
break;
case 0x5C0: //This method only works for 2013-2017 AZE0 LEAF packs, the mux is different on other generations
if(LEAF_Battery_Type == AZE0_BATTERY)
{
if ((rx_frame.data.u8[0]>>6) == 1)
{ // Battery MAX temperature. Effectively has only 7-bit precision, as the bottom bit is always 0.
LB_HistData_Temperature_MAX = ((rx_frame.data.u8[2] / 2) - 40);
}
if ((rx_frame.data.u8[0]>>6) == 3)
{ // Battery MIN temperature. Effectively has only 7-bit precision, as the bottom bit is always 0.
LB_HistData_Temperature_MIN = ((rx_frame.data.u8[2] / 2) - 40);
}
}
if(LEAF_Battery_Type == ZE1_BATTERY)
{ //note different mux location in first frame
if ((rx_frame.data.u8[0] & 0x0F) == 1)
{
LB_HistData_Temperature_MAX = ((rx_frame.data.u8[2] / 2) - 40);
}
if ((rx_frame.data.u8[0] & 0x0F) == 3)
{
LB_HistData_Temperature_MIN = ((rx_frame.data.u8[2] / 2) - 40);
}
}
break;
case 0x59E:
//AZE0 2013-2017 or ZE1 2018-2023 battery detected
//Only detect as AZE0 if not already set as ZE1
if(LEAF_Battery_Type != ZE1_BATTERY)
{
LEAF_Battery_Type = AZE0_BATTERY;
}
break;
case 0x1ED:
case 0x1C2:
//ZE1 2018-2023 battery detected!
LEAF_Battery_Type = ZE1_BATTERY;
break;
default:
break;
}
}
else
{
//printf("New extended frame");
}
}
// Send 100ms CAN Message
if (currentMillis - previousMillis100 >= interval100)
{
previousMillis100 = currentMillis;
ESP32Can.CANWriteFrame(&LEAF_50B); //Always send 50B as a static message (Contains HCM_WakeUpSleepCommand == 11b == WakeUp, and CANMASK = 1)
mprun100++;
if (mprun100 > 3)
{
mprun100 = 0;
}
if (mprun100 == 0)
{
LEAF_50C.data.u8[3] = 0x00;
LEAF_50C.data.u8[4] = 0x5D;
LEAF_50C.data.u8[5] = 0xC8;
}
else if(mprun100 == 1)
{
LEAF_50C.data.u8[3] = 0x01;
LEAF_50C.data.u8[4] = 0xB2;
LEAF_50C.data.u8[5] = 0x31;
}
else if(mprun100 == 2)
{
LEAF_50C.data.u8[3] = 0x02;
LEAF_50C.data.u8[4] = 0x5D;
LEAF_50C.data.u8[5] = 0x63;
}
else if(mprun100 == 3)
{
LEAF_50C.data.u8[3] = 0x03;
LEAF_50C.data.u8[4] = 0xB2;
LEAF_50C.data.u8[5] = 0x9A;
}
ESP32Can.CANWriteFrame(&LEAF_50C);
}
//Send 10ms message
if (currentMillis - previousMillis10 >= interval10)
{
previousMillis10 = currentMillis;
if(mprun10 == 0)
{
LEAF_1D4.data.u8[4] = 0x07;
LEAF_1D4.data.u8[7] = 0x12;
}
else if(mprun10 == 1)
{
LEAF_1D4.data.u8[4] = 0x47;
LEAF_1D4.data.u8[7] = 0xD5;
}
else if(mprun10 == 2)
{
LEAF_1D4.data.u8[4] = 0x87;
LEAF_1D4.data.u8[7] = 0x19;
}
else if(mprun10 == 3)
{
LEAF_1D4.data.u8[4] = 0xC7;
LEAF_1D4.data.u8[7] = 0xDE;
}
ESP32Can.CANWriteFrame(&LEAF_1D4);
mprun10++;
if (mprun10 > 3)
{
mprun10 = 0;
}
switch(mprun10r)
{
case(0):
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x00;
LEAF_1F2.data.u8[7] = 0x8F;
break;
case(1):
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x01;
LEAF_1F2.data.u8[7] = 0x80;
break;
case(2):
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x02;
LEAF_1F2.data.u8[7] = 0x81;
break;
case(3):
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x03;
LEAF_1F2.data.u8[7] = 0x82;
break;
case(4):
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x00;
LEAF_1F2.data.u8[7] = 0x8F;
break;
case(5): // Set 2
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x01;
LEAF_1F2.data.u8[7] = 0x84;
break;
case(6):
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x02;
LEAF_1F2.data.u8[7] = 0x85;
break;
case(7):
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x03;
LEAF_1F2.data.u8[7] = 0x86;
break;
case(8):
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x00;
LEAF_1F2.data.u8[7] = 0x83;
break;
case(9):
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x01;
LEAF_1F2.data.u8[7] = 0x84;
break;
case(10): // Set 3
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x02;
LEAF_1F2.data.u8[7] = 0x81;
break;
case(11):
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x03;
LEAF_1F2.data.u8[7] = 0x82;
break;
case(12):
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x00;
LEAF_1F2.data.u8[7] = 0x8F;
break;
case(13):
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x01;
LEAF_1F2.data.u8[7] = 0x80;
break;
case(14):
LEAF_1F2.data.u8[3] = 0xB0;
LEAF_1F2.data.u8[6] = 0x02;
LEAF_1F2.data.u8[7] = 0x81;
break;
case(15): // Set 4
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x03;
LEAF_1F2.data.u8[7] = 0x86;
break;
case(16):
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x00;
LEAF_1F2.data.u8[7] = 0x83;
break;
case(17):
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x01;
LEAF_1F2.data.u8[7] = 0x84;
break;
case(18):
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x02;
LEAF_1F2.data.u8[7] = 0x85;
break;
case(19):
LEAF_1F2.data.u8[3] = 0xB4;
LEAF_1F2.data.u8[6] = 0x03;
LEAF_1F2.data.u8[7] = 0x86;
break;
default:
break;
}
ESP32Can.CANWriteFrame(&LEAF_1F2); //Contains (CHG_STA_RQ == 1 == Normal Charge)
mprun10r++;
if(mprun10r > 19) // 0x1F2 patter repeats after 20 messages,
{
mprun10r = 0;
}
//Serial.println("CAN 10ms done");
}
}
uint16_t convert2unsignedint16(uint16_t signed_value)
{
if(signed_value < 0)
{
return(65535 + signed_value);
}
else
{
return signed_value;
}
}
void handle_LED_state()
{
// Determine how bright the green LED should be
if (rampUp && green < maxBrightness)
{
green++;
}
else if (rampUp && green == maxBrightness)
{
rampUp = false;
}
else if (!rampUp && green > 0)
{
green--;
} else if (!rampUp && green == 0)
{
rampUp = true;
}
pixels.setPixelColor(0, pixels.Color(0, green, 0)); // Set LED to green according to calculated value
if(bms_status == FAULT)
{
pixels.setPixelColor(0, pixels.Color(255, 0, 0)); // Red LED full brightness
}
pixels.show(); // This sends the updated pixel color to the hardware.
}

178
Software/esp.c Normal file
View file

@ -0,0 +1,178 @@
// Implements the RMT peripheral on Espressif SoCs
// Copyright (c) 2020 Lucian Copeland for Adafruit Industries
/* Uses code from Espressif RGB LED Strip demo and drivers
* Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined(ESP32)
#include <Arduino.h>
#include "driver/rmt.h"
#if defined(ESP_IDF_VERSION)
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(4, 0, 0)
#define HAS_ESP_IDF_4
#endif
#endif
// This code is adapted from the ESP-IDF v3.4 RMT "led_strip" example, altered
// to work with the Arduino version of the ESP-IDF (3.2)
#define WS2812_T0H_NS (400)
#define WS2812_T0L_NS (850)
#define WS2812_T1H_NS (800)
#define WS2812_T1L_NS (450)
#define WS2811_T0H_NS (500)
#define WS2811_T0L_NS (2000)
#define WS2811_T1H_NS (1200)
#define WS2811_T1L_NS (1300)
static uint32_t t0h_ticks = 0;
static uint32_t t1h_ticks = 0;
static uint32_t t0l_ticks = 0;
static uint32_t t1l_ticks = 0;
// Limit the number of RMT channels available for the Neopixels. Defaults to all
// channels (8 on ESP32, 4 on ESP32-S2 and S3). Redefining this value will free
// any channels with a higher number for other uses, such as IR send-and-recieve
// libraries. Redefine as 1 to restrict Neopixels to only a single channel.
#define ADAFRUIT_RMT_CHANNEL_MAX RMT_CHANNEL_MAX
#define RMT_LL_HW_BASE (&RMT)
bool rmt_reserved_channels[ADAFRUIT_RMT_CHANNEL_MAX];
static void IRAM_ATTR ws2812_rmt_adapter(const void *src, rmt_item32_t *dest, size_t src_size,
size_t wanted_num, size_t *translated_size, size_t *item_num)
{
if (src == NULL || dest == NULL) {
*translated_size = 0;
*item_num = 0;
return;
}
const rmt_item32_t bit0 = {{{ t0h_ticks, 1, t0l_ticks, 0 }}}; //Logical 0
const rmt_item32_t bit1 = {{{ t1h_ticks, 1, t1l_ticks, 0 }}}; //Logical 1
size_t size = 0;
size_t num = 0;
uint8_t *psrc = (uint8_t *)src;
rmt_item32_t *pdest = dest;
while (size < src_size && num < wanted_num) {
for (int i = 0; i < 8; i++) {
// MSB first
if (*psrc & (1 << (7 - i))) {
pdest->val = bit1.val;
} else {
pdest->val = bit0.val;
}
num++;
pdest++;
}
size++;
psrc++;
}
*translated_size = size;
*item_num = num;
}
void espShow(uint8_t pin, uint8_t *pixels, uint32_t numBytes, boolean is800KHz) {
// Reserve channel
rmt_channel_t channel = ADAFRUIT_RMT_CHANNEL_MAX;
for (size_t i = 0; i < ADAFRUIT_RMT_CHANNEL_MAX; i++) {
if (!rmt_reserved_channels[i]) {
rmt_reserved_channels[i] = true;
channel = i;
break;
}
}
if (channel == ADAFRUIT_RMT_CHANNEL_MAX) {
// Ran out of channels!
return;
}
#if defined(HAS_ESP_IDF_4)
rmt_config_t config = RMT_DEFAULT_CONFIG_TX(pin, channel);
config.clk_div = 2;
#else
// Match default TX config from ESP-IDF version 3.4
rmt_config_t config = {
.rmt_mode = RMT_MODE_TX,
.channel = channel,
.gpio_num = pin,
.clk_div = 2,
.mem_block_num = 1,
.tx_config = {
.carrier_freq_hz = 38000,
.carrier_level = RMT_CARRIER_LEVEL_HIGH,
.idle_level = RMT_IDLE_LEVEL_LOW,
.carrier_duty_percent = 33,
.carrier_en = false,
.loop_en = false,
.idle_output_en = true,
}
};
#endif
rmt_config(&config);
rmt_driver_install(config.channel, 0, 0);
// Convert NS timings to ticks
uint32_t counter_clk_hz = 0;
#if defined(HAS_ESP_IDF_4)
rmt_get_counter_clock(channel, &counter_clk_hz);
#else
// this emulates the rmt_get_counter_clock() function from ESP-IDF 3.4
if (RMT_LL_HW_BASE->conf_ch[config.channel].conf1.ref_always_on == RMT_BASECLK_REF) {
uint32_t div_cnt = RMT_LL_HW_BASE->conf_ch[config.channel].conf0.div_cnt;
uint32_t div = div_cnt == 0 ? 256 : div_cnt;
counter_clk_hz = REF_CLK_FREQ / (div);
} else {
uint32_t div_cnt = RMT_LL_HW_BASE->conf_ch[config.channel].conf0.div_cnt;
uint32_t div = div_cnt == 0 ? 256 : div_cnt;
counter_clk_hz = APB_CLK_FREQ / (div);
}
#endif
// NS to tick converter
float ratio = (float)counter_clk_hz / 1e9;
if (is800KHz) {
t0h_ticks = (uint32_t)(ratio * WS2812_T0H_NS);
t0l_ticks = (uint32_t)(ratio * WS2812_T0L_NS);
t1h_ticks = (uint32_t)(ratio * WS2812_T1H_NS);
t1l_ticks = (uint32_t)(ratio * WS2812_T1L_NS);
} else {
t0h_ticks = (uint32_t)(ratio * WS2811_T0H_NS);
t0l_ticks = (uint32_t)(ratio * WS2811_T0L_NS);
t1h_ticks = (uint32_t)(ratio * WS2811_T1H_NS);
t1l_ticks = (uint32_t)(ratio * WS2811_T1L_NS);
}
// Initialize automatic timing translator
rmt_translator_init(config.channel, ws2812_rmt_adapter);
// Write and wait to finish
rmt_write_sample(config.channel, pixels, (size_t)numBytes, true);
rmt_wait_tx_done(config.channel, pdMS_TO_TICKS(100));
// Free channel again
rmt_driver_uninstall(config.channel);
rmt_reserved_channels[channel] = false;
gpio_set_direction(pin, GPIO_MODE_OUTPUT);
}
#endif