Battery-Emulator/Software/src/battery/DALY-BMS.cpp
2025-06-22 23:30:11 +03:00

215 lines
7.1 KiB
C++

#include "DALY-BMS.h"
#include <cstdint>
#include "../datalayer/datalayer.h"
#include "../devboard/utils/events.h"
#include "../include.h"
/* Do not change code below unless you are sure what you are doing */
static uint32_t lastPacket = 0;
static int16_t temperature_min_dC = 0;
static int16_t temperature_max_dC = 0;
static int16_t current_dA = 0;
static uint16_t voltage_dV = 0;
static uint32_t remaining_capacity_mAh = 0;
static uint16_t cellvoltages_mV[48] = {0};
static uint16_t cellvoltage_min_mV = 0;
static uint16_t cellvoltage_max_mV = 0;
static uint16_t SOC = 0;
static bool has_fault = false;
void DalyBms::update_values() {
datalayer.battery.status.real_soc = SOC;
datalayer.battery.status.voltage_dV = voltage_dV; //value is *10 (3700 = 370.0)
datalayer.battery.status.current_dA = current_dA; //value is *10 (150 = 15.0)
datalayer.battery.status.remaining_capacity_Wh = (remaining_capacity_mAh * (uint32_t)voltage_dV) / 10000;
datalayer.battery.status.max_charge_power_W = (BATTERY_MAX_CHARGE_AMP * voltage_dV) / 100;
datalayer.battery.status.max_discharge_power_W = (BATTERY_MAX_DISCHARGE_AMP * voltage_dV) / 100;
// limit power when SoC is low or high
uint32_t adaptive_power_limit = 999999;
if (SOC < 2000)
adaptive_power_limit = ((uint32_t)(SOC + 100) * POWER_PER_PERCENT) / 100;
else if (SOC > 8000)
adaptive_power_limit = ((10000 - (uint32_t)SOC) * POWER_PER_PERCENT) / 100;
if (adaptive_power_limit < datalayer.battery.status.max_charge_power_W)
datalayer.battery.status.max_charge_power_W = adaptive_power_limit;
if (SOC < 2000 && adaptive_power_limit < datalayer.battery.status.max_discharge_power_W)
datalayer.battery.status.max_discharge_power_W = adaptive_power_limit;
int32_t temperature_limit = POWER_PER_DEGREE_C * (int32_t)temperature_min_dC / 10 + POWER_AT_0_DEGREE_C;
if (temperature_limit <= 0 || temperature_min_dC < BATTERY_MINTEMPERATURE ||
temperature_max_dC > BATTERY_MAXTEMPERATURE)
temperature_limit = 0;
if (temperature_limit < datalayer.battery.status.max_discharge_power_W)
datalayer.battery.status.max_discharge_power_W = temperature_limit;
if (temperature_limit < datalayer.battery.status.max_charge_power_W)
datalayer.battery.status.max_charge_power_W = temperature_limit;
memcpy(datalayer.battery.status.cell_voltages_mV, cellvoltages_mV, sizeof(cellvoltages_mV));
datalayer.battery.status.cell_min_voltage_mV = cellvoltage_min_mV;
datalayer.battery.status.cell_max_voltage_mV = cellvoltage_max_mV;
datalayer.battery.status.temperature_min_dC = temperature_min_dC;
datalayer.battery.status.temperature_max_dC = temperature_max_dC;
datalayer.battery.status.real_bms_status = has_fault ? BMS_FAULT : BMS_ACTIVE;
}
void DalyBms::setup(void) { // Performs one time setup at startup
strncpy(datalayer.system.info.battery_protocol, Name, 63);
datalayer.system.info.battery_protocol[63] = '\0';
datalayer.battery.info.number_of_cells = CELL_COUNT;
datalayer.battery.info.max_design_voltage_dV = MAX_PACK_VOLTAGE_DV;
datalayer.battery.info.min_design_voltage_dV = MIN_PACK_VOLTAGE_DV;
datalayer.battery.info.max_cell_voltage_mV = MAX_CELL_VOLTAGE_MV;
datalayer.battery.info.min_cell_voltage_mV = MIN_CELL_VOLTAGE_MV;
datalayer.battery.info.total_capacity_Wh = BATTERY_WH_MAX;
datalayer.system.status.battery_allows_contactor_closing = true;
auto rx_pin = esp32hal->RS485_RX_PIN();
auto tx_pin = esp32hal->RS485_TX_PIN();
if (!esp32hal->alloc_pins(Name, rx_pin, tx_pin)) {
return;
}
Serial2.begin(baud_rate(), SERIAL_8N1, rx_pin, tx_pin);
}
uint8_t calculate_checksum(uint8_t buff[12]) {
uint8_t check = 0;
for (uint8_t i = 0; i < 12; i++) {
check += buff[i];
}
return check;
}
uint16_t decode_uint16be(uint8_t data[8], uint8_t offset) {
uint16_t upper = data[offset];
uint16_t lower = data[offset + 1];
return (upper << 8) | lower;
}
int16_t decode_int16be(uint8_t data[8], uint8_t offset) {
int16_t upper = data[offset];
int16_t lower = data[offset + 1];
return (upper << 8) | lower;
}
uint32_t decode_uint32be(uint8_t data[8], uint8_t offset) {
return (((uint32_t)data[offset]) << 24) | (((uint32_t)data[offset + 1]) << 16) | (((uint32_t)data[offset + 2]) << 8) |
((uint32_t)data[offset + 3]);
}
#ifdef DEBUG_VIA_USB
void dump_buff(const char* msg, uint8_t* buff, uint8_t len) {
Serial.print("[DALY-BMS] ");
Serial.print(msg);
for (int i = 0; i < len; i++) {
Serial.print(buff[i] >> 4, HEX);
Serial.print(buff[i] & 0xf, HEX);
Serial.print(" ");
}
Serial.println();
}
#endif
void decode_packet(uint8_t command, uint8_t data[8]) {
datalayer.battery.status.CAN_battery_still_alive = CAN_STILL_ALIVE;
switch (command) {
case 0x90:
voltage_dV = decode_uint16be(data, 0);
current_dA = decode_int16be(data, 4) - 30000;
SOC = decode_uint16be(data, 6) * 10;
break;
case 0x91:
cellvoltage_max_mV = decode_uint16be(data, 0);
cellvoltage_min_mV = decode_uint16be(data, 3);
break;
case 0x92:
temperature_max_dC = (data[0] - 40) * 10;
temperature_min_dC = (data[2] - 40) * 10;
break;
case 0x93:
remaining_capacity_mAh = decode_uint32be(data, 4);
break;
case 0x94:
break;
case 0x95:
if (data[0] > 0 && data[0] <= 16) {
uint8_t frame_index = (data[0] - 1) * 3;
cellvoltages_mV[frame_index + 0] = decode_uint16be(data, 1);
cellvoltages_mV[frame_index + 1] = decode_uint16be(data, 3);
cellvoltages_mV[frame_index + 2] = decode_uint16be(data, 5);
}
break;
case 0x96:
break;
case 0x97:
break;
case 0x98:
// for now we do not handle individual faults. All of them are 0 when ok, and 1 when a fault occurs
has_fault = false;
for (int i = 0; i < 8; i++) {
if (data[i] != 0x00) {
has_fault = true;
}
}
break;
}
}
void DalyBms::transmit_rs485(unsigned long currentMillis) {
static uint8_t nextCommand = 0x90;
if (currentMillis - lastPacket > 60) {
lastPacket = currentMillis;
uint8_t tx_buff[13] = {0};
tx_buff[0] = 0xA5;
tx_buff[1] = 0x40;
tx_buff[2] = nextCommand;
tx_buff[3] = 8;
tx_buff[12] = calculate_checksum(tx_buff);
#ifdef DEBUG_VIA_USB
dump_buff("transmitting: ", tx_buff, 13);
#endif
Serial2.write(tx_buff, 13);
nextCommand++;
if (nextCommand > 0x98)
nextCommand = 0x90;
}
}
void DalyBms::receive() {
static uint8_t recv_buff[13] = {0};
static uint8_t recv_len = 0;
while (Serial2.available()) {
recv_buff[recv_len] = Serial2.read();
recv_len++;
if (recv_len > 0 && recv_buff[0] != 0xA5 || recv_len > 1 && recv_buff[1] != 0x01 ||
recv_len > 2 && (recv_buff[2] < 0x90 || recv_buff[2] > 0x98) || recv_len > 3 && recv_buff[3] != 8 ||
recv_len > 12 && recv_buff[12] != calculate_checksum(recv_buff)) {
#ifdef DEBUG_VIA_USB
dump_buff("dropping partial rx: ", recv_buff, recv_len);
#endif
recv_len = 0;
}
if (recv_len > 12) {
#ifdef DEBUG_VIA_USB
dump_buff("decoding successfull rx: ", recv_buff, recv_len);
#endif
decode_packet(recv_buff[2], &recv_buff[4]);
recv_len = 0;
lastPacket = millis();
}
}
}